Main course information	Main course information		
Academic subject	Evolutionary Paleoecology		
Degree course	Science of Nature and Environment		
Classe di laurea	LM-60 - LM75		
ECTS credits (CFU)	6		
Compulsory attendance	Strongly recommended		
Teaching language	Italian		
Accademic Year	2019/2020		

Teacher information		
Name & SURNAME	ria Marino	
email	maria.marino@uniba.it	
Tel.	0805443454 - 3397429003	
Tutorial time/day	Monday 13-17, Thuesday 15-17, Palazzo di Scienze detta Terra, University Campus	

Deteile	Study area	code SSD Type c	
Details	Earth Science	GEO01	Lecture, workshop, field exercise

Teaching schedule	Year	Semester
reaching schedule	II	

Mode of Didactic	CFU/ECTS	Lessons (hours)	CFU/ECTS lab	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours
supply	5	40	0,5	7,5	0	0	0,5	10

Time	Total hours	Teaching hours	Self-study hours
management	150	57.5	92.5

Academic	First lesson	Final lesson
Calendar	l ottobre 2019	10 gennaio 2020

Syllabus		
Course entry requirements	Geologic Time Scale, Plate tectonics	
Expected learning outcomes (ac	cording to Dublin Descriptors)	
Knowledge and understanding	The student has to know all topics developed during the semester in order to understand evolution of Earth's terrestrial and marine ecosystems through the Cambrian - Recent time by scrutinizing the most important Life evolutionary steps documented in the fossil record. The knowledge of main physical modifications of Earth through geologic time and the comprehension of relationships among all the components of our planet including marine and terrestrial Biota represent the most important issue of the teaching. The taught class is the main didactic tool to acquire this knowledge.	
Applying knowledge and understanding	The student has to improve its ability to connect the modifications of physical paleoenvironmens with Life evolution during the Phanerozoic. He must to recognize the evolutionary processes, which drove the most important changes of terrestrial and marine organisms during the different climate phases, diverse paleogeographic and geological settings characterizing the past 600 Ma. Such abilities are acquired through	

	taught class and class discussion on paleoecological and paleoenvironmental key topics concerning crucial changes of Earth's history.
Making informed judgements and choices	The student has to be able to: critically argue and discuss the meaning of the fossils for the reconstruction of Earth's history and past ecosystems; interpret the evolutionary innovations of Life and their relations with past paleoenvironments. These abilities are improved during class discussion of paleobiological problems.
Communicating knowledge and understanding	Acquisition of scientific glossary to carefully describe concepts on the past ecosystems evolution by means of specific paleontological terminology. The student is stimulated to work and discuss together with other colleagues during class teaching in order to improve the communication skills.
Ability to continue learning	Acquisition of capability to obtain additional scientific information and integration with different disciplines. Ability to recognize the main evolutionary phases of biodiversity changes and the relations between biotic and abiotic factors, which acted through time. Skill to provide deeper knowledge on some paleontological topics of crucial interest by means of personal bibliographic research.

Sylabus	
Sylabus	General introduction on the course teaching 5 CFU/ECTS of oral teaching, 0,5 CFU/ECTS class exercises, 0,5 CFU/ECTS field exercise Main topics Basic elements of Paleoecology and Paleobiogeography. Evolution of marine and terrestrial ecosystems through Phanerozoic by examining the main biological changes provided by fossil record. Paleozoic Paleogeography and Climate from Cambrian to Permian. Cambrian Radiation. Lagerstatten of Burgess Shales, Chengjiang, Hunsruck, Rhynie, Mazon Creek, Karoo. Marine invertebrates. First vertebrates, evolution from fish to amphibious and reptiles. First plants. Failure of Carboniferous forests. Changes at the end of Paleozoic and Permian mass extinction. Mesozoic Paleogeography and Climate from Trias to Cretaceous. Increase of biodiversity. Lagerstatten of Holzmaden Shale, Morrison, Jehol. Marine invertebrates. Rudists, Ammonoids. Marine vertebrates, first avial reptiles. First dinosaurs, their evolution and "extinction". First Mammalia. Dinosauria-Birds. Archaeopteryx and other new findings on dinosaur-bird transition. Vegetation, radiation of angiosperms, co-evolution of insects. Phytoplankton evolution Cenozoic Paleogeography and Climate. Paleocene-Eocene Thermal maximum. Antarctic glaciation (Eocene-Oligocene). Lagerstatten of Grube Messel, Bolca. The big benthic foraminifera and new
	visit paleontological site/museum. Palaeoecology: Ecosystems, environments and Evolution. Brenchley P.J. and Harper D.A.T.,
Course books/Bibliography	Chapman & Hall Editors (available online). Cause of Quaternary Megafauna extinction by Marianne Lehnert (available online) Evolution of fossil ecosystems. Selden P. & Nudds J., II Edition, 2012. ISBN: 987-1-84076-160-3

	(available online)
	The first Vertebrate, oceans of the Paleozoic Era. Holmes T. 2008. ISBN ISBN 978-0-8160-
	59584 (available online)
	Other scientific papers from online literature.
Notes	
	Lecture; Inquiry-based learning; Flipped classroom. Students are stimulated to develop ability for
Teaching methods	self-evaluation through discussion-debate during lecture and class exercises concerning crucial
-	topics related to the themes of program.
Assessment methods	
(indicate at least the	Oral
type written, oral,	Oral
other)	
	Knowledge and understanding
	The student has to demonstrate to know all the themes of the course. This is necessary to
	achieve a positive evaluation.
	Ability to apply knowledge and understanding
	The student has to discuss carefully the complex relationships between abiotic and biotic
	factors, which controlled the Life evolution. This is necessary to achieve a positive evaluation.
	Autonomy of judgment
	The student has to show ability to discuss evolutionary problematics by connecting information
Evaluation criteria	from many integrated disciplines such as geology, botanic, ecology, zoology. This is necessary to
	obtain a very positive evaluation.
	Communication skills
	A very positive evaluation is based on the student skill concerning good and appropriate
	scientific terminology and clear exposition of complex concepts.
	Learning skill
	The student has to document its ability to acquire independent advanced knowledge and critica
	thinking during discussion of paleontological themes. This may provide an excellent evaluation.
	I dimking during discussion of pareoncological themes. This may provide all excellent evaluation.